Efficient Wavefield Simulators Based on Krylov Model-Order Reduction Techniques

From Resonators to Open Domains

Rob Remis

Delft University of Technology

November 3, 2017 - ICERM Brown University

Thanks

A special thanks to

- Mikhail Zaslavsky, Schlumberger-Doll Research
- Jörn Zimmerling, Delft University of Technology
and
- Vladimir Druskin, Schlumberger-Doll Research

Happy birthday

- Happy birthday Vladimir!

Introduction

- Back in the day (late 80s, early 90s)
- SLDM: Spectral Lanczos Decomposition Method
- Fast convergence for parabolic (diffusion) equations
- Applicable to lossless (hyperbolic) wave equation as well
- Not many advantages compared with explicit time-stepping (FDTD)

Main research question

- What happens if we include losses?
- Lossy wavefield systems
- Perfectly Matched Layers (PML, after 1994)

Basic equations

- First-order lossless wavefield system

$$
\left(\mathcal{D}+\mathcal{M} \partial_{t}\right) \mathcal{F}=-w(t) \mathcal{Q}
$$

- Plus initial conditions
- Dirichlet boundary conditions (no PML) included
- Lossy wavefield system

$$
\left(\mathcal{D}+\mathcal{S}+\mathcal{M} \partial_{t}\right) \mathcal{F}=-w(t) \mathcal{Q}
$$

Maxwell's equations

- Field vector

$$
\mathcal{F}=\left[E_{x}, E_{y}, E_{z}, H_{x}, H_{y}, H_{z}\right]^{T}
$$

- Source vector

$$
\mathcal{Q}=\left[J_{x}^{\mathrm{sp}}, J_{y}^{\mathrm{sp}}, J_{z}^{\mathrm{sp}}, K_{x}^{\mathrm{sp}}, K_{y}^{\mathrm{sp}}, K_{z}^{\mathrm{sp}}\right]^{T}
$$

Maxwell's equations

- Medium matrices

$$
\mathcal{M}=\left(\begin{array}{ll}
\varepsilon & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\mu}
\end{array}\right)
$$

and

$$
\mathcal{S}=\left(\begin{array}{ll}
\boldsymbol{\sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right)
$$

Maxwell's equations

- Differentiation matrix

$$
\mathcal{D}=\left(\begin{array}{cc}
\mathbf{0} & -\boldsymbol{\nabla} \times \\
\boldsymbol{\nabla} \times & \mathbf{0}
\end{array}\right)
$$

- Signature matrix

$$
\delta^{-}=\operatorname{diag}(1,1,1,-1,-1,-1)
$$

Basic equations

- Spatial discretization

$$
\left(D+S+M \partial_{t}\right) f=-w(t) q
$$

- Order of this system can be very large especially in 3D
- Discretized counterpart of δ^{-}is denoted by d^{-}

Basic equations

- Medium matrices (isotropic media)
- S diagonal and semipositive definite
- M diagonal and positive definite
- Differentiation matrix
- W step size matrix = diagonal and positive definite
- Symmetry property

$$
D^{T} W=-W D
$$

Basic equations

- System matrix for lossless media: $A=M^{-1} D$
- System matrix for lossy media: $A=M^{-1}(D+S)$
- Evolution operator $=\exp (-A t)$

Basic equations

- Lossless media: A is skew-symmetric w.r.t. WM
- Evolution operator is orthogonal w.r.t. WM
- Inner product and norm

$$
\langle x, y\rangle=y^{H} W M x \quad\|x\|=\langle x, x\rangle^{1 / 2}
$$

- Stored field energy in the computational domain

$$
\frac{1}{2}\|f\|^{2}
$$

- Initial-value problem: norm of f is preserved

Lanczos algorithms

- Lossless media: construct SLDM field approximations via Lanczos algorithm for skew-symmetric matrices
- FDTD can be written in a similar form as Lanczos algorithm
recurrence relation for FDTD
recurrence relation for Fibonacci polynomials

Lanczos algorithms

- Lanczos recurrence coefficients: β_{i}
- Comparison with FDTD: $1 / \beta_{i}=$ time step of Lanczos
- Automatic time step adaptation - no Courant condition

Lanczos algorithms

- Lossy media: system matrix $A=M^{-1}(D+S)$ is no longer skew-symmetric
- Introduce

$$
d^{\mathrm{p}}=\frac{1}{2}\left(I+d^{-}\right) \quad \text { and } \quad d^{\mathrm{m}}=\frac{1}{2}\left(I-d^{-}\right)
$$

Lanczos algorithms

- Special case: $S=\xi d^{\mathrm{P}}$
$\sigma(\mathbf{x})=\xi \varepsilon(\mathbf{x})$ for all \mathbf{x} belonging to computational domain
- Exploit shift invariance of Lanczos decomposition
- Basis for lossless media can be used to describe wave propagation for lossy media (in this special case)

Lanczos algorithms

- Not possible for general lossy media
- Matrix D is symmetric with respect to $W d^{-}$

$$
D^{T} W d^{-}=W d^{-} D
$$

- System matrix A is symmetric w.r.t. $W^{-} d^{-}$

Lanczos algorithms

- System matrix A is symmetric w.r.t. bilinear form

$$
\langle x, y\rangle=y^{H} W M d^{-} x
$$

- Free-field Lagrangian

$$
\frac{1}{2}\langle f, f\rangle
$$

Lanczos algorithms

- Write $f=f(q)$ to indicate that the field is generated by a source q
- Reciprocity:
- Source vector: $q=d^{\mathrm{P}} q$, receiver vector $r=d^{\mathrm{p}} r$

$$
\langle f(q), r\rangle=\langle q, f(r)\rangle
$$

- Source vector: $q=d^{\mathrm{p}} q$, receiver vector $r=d^{\mathrm{m}} r$

$$
\langle f(q), r\rangle=-\langle q, f(r)\rangle
$$

Lanczos algorithms

- SLDM field approximations for lossy media can be constructed via modified Lanczos algorithm

Modified Lanczos algorithm
Lanczos algorithm for symmetric matrices with inner product replaced by bilinear form

- Modified Lanczos algorithm can also be obtained from two-sided Lanczos algorithm
- Can the modified Lanczos algorithm breakdown in exact arithmetic?
- No outward wave propagation has been included up to this point
- Implementation via Perfectly Matched Layers (PML)
- Coordinate stretching (Laplace domain)

$$
\partial_{k} \longleftrightarrow \chi_{k}^{-1} \partial_{k} \quad k=x, y, z
$$

- Stretching function

$$
\chi_{k}(k, s)=\alpha_{k}(k)+\frac{\beta_{k}(k)}{s}
$$

- Stretched first-order system

$$
[\mathcal{D}(s)+\mathcal{S}+s \mathcal{M}] \hat{\mathcal{F}}=-\hat{w}(s) \mathcal{Q}
$$

- Direct spatial discretization

$$
[D(s)+S+s M] \hat{f}=-\hat{w}(s) q
$$

- Leads to nonlinear eigenproblems for spatial dimensions >1
- Linearization of the PML
- Spatial finite-difference discretization using complex PML step sizes

$$
\left(D_{\mathrm{cs}}+S+s M\right) f_{\mathrm{cs}}=-w(s) q
$$

- System matrix

$$
A_{\mathrm{cs}}=M^{-1}\left(D_{\mathrm{cs}}+S\right)
$$

- V. Druskin and R. F. Remis, "A Krylov stability-corrected coordinate stretching method to simulate wave propagation in unbounded domains," SIAM J. Sci. Comput., Vol. 35, 2013, pp. B376-B400.
- V. Druskin, S. Güttel, and L. Knizhnerman, "Near-optimal perfectly matched layers for indefinite Helmholtz problems," SIAM Rev. 58-1 (2016), pp. 90-116.
- What about the spectrum of the system matrix?

- Eigenvalues move into the complex plane

- Stable part of the spectrum

PML

- Stability correction

Stability-Corrected Wave Function

- Time-domain stability-corrected wave function

$$
f(t)=-w(t) * 2 \eta(t) \operatorname{Re}\left[\eta\left(A_{c s}\right) \exp \left(-A_{\mathrm{cs}} t\right) q\right]
$$

- Complex Heaviside unit step function

$$
\eta(z)= \begin{cases}1 & \operatorname{Re}(z)>0 \\ 0 & \operatorname{Re}(z)<0\end{cases}
$$

Stability-Corrected Wave Function

- Frequency-domain stability-corrected wave function

$$
\hat{f}(s)=-\hat{w}(s)\left[r\left(A_{c s}, s\right)+r\left(\bar{A}_{c s}, s\right)\right] q
$$

with

$$
r(z, s)=\frac{\eta(z)}{z+s}
$$

- Note that $\hat{f}(\bar{s})=\overline{\hat{f}}(s)$ and the stability-corrected wave function is a nonentire function of the system matrix $A_{c s}$

Stability-Corrected Wave Function

- Symmetry relations are preserved
- With a step size matrix W that has complex entries
- These entries correspond to PML locations

Stability-Corrected Wave Function

- Stability-corrected wave function cannot be computed by FDTD
- SLDM field approximations via modified Lanczos algorithm
- Reduced-order model

$$
f_{m}(t)=-w(t) * 2\left\|M^{-1} \mathrm{q}\right\| \eta(t) \operatorname{Re}\left[V_{m} \eta\left(H_{m}\right) \exp \left(-H_{m} t\right) e_{1}\right]
$$

Stability-Corrected Wave Function

- $m=300$

Stability-Corrected Wave Function

- $m=400$

Stability-Corrected Wave Function

- $m=500$

Stability-Corrected Wave Function

- Photonic crystal

Stability-Corrected Wave Function

- $m=1000$ vs. 8200 FDTD iterations

Stability-Corrected Wave Function

- $m=2000$ vs. 8200 FDTD iterations

Stability-Corrected Wave Function

- $m=3000$ vs. 8200 FDTD iterations

Extensions

- Approach has been extended for dispersive media in
- J. Zimmerling, L. Wei, H. Urbach, and R. Remis, A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media, Journal of Computational Physics, Vol. 315, pp. 348-362, 2016.
- Extended Krylov subspace implementations are discussed in
- V. Druskin, R. Remis, and M. Zaslavsky, Journal of Computational Physics, Vol. 272, pp. 608-618, 2014.

Current and future work

- Rational Krylov field approximations No stability-correction required
- Phase-preconditioned rational Krylov methods Large travel times
- More on this in the coming week!

Thank you for your attention!

